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AIIIInIct-This investigation is coneemed with the problem ofa hollow spllm subjected to uniform
internal and external pressure within the equilibrium theory of finite eluticity. The sphere is
composed of homoaeneous, isotropic, compressible materials of special type, namely harmonic
materials. Explicit closed-form solutions for the deformation and stress fields are obtained. The
true stress distribution, expressed u a function of the undeformed coordinates, is shown to be
essentially independent ofmaterial properties. The two cases ofintemal pressure only, and external
pressure only, are examined in detail. In the former case, there is a critical value of the applied
pressure at which the maximum hoop stress in the sphere, occurring at the inner surface, becomes
unbounded. Results appropriate for thin shells are also obtained. For the case ofexternal pressure
only, a critical value of the applied pressure exists for which the cavity closes. The maximum hoop
stress does not always occur at the cavity wall. For nearly solid spheres. or equivalently, for a cavity
in an unbounded medium, explicit results are provided for the correspondina stress concentration
factor. For sufficiently small values ofapplied pressures, all the foreaoing results coincide with those
of classical linear isotropic elastostatics.

I. INTRODUCTION

In this paper we examine the finite elastostatic deformation of a hollow sphere subjected
to uniform internal and external pressure. The resulting deformation and stress fields are
found to bear some similarities, as well as certain striking differences, to the corresponding
quantities in the infinitesimal theory of elasticity.

We consider a sphere composed of homogeneous, isotropic, compressible materials of
special type, namely the harmonic materials introduced by John[l]. Harmonic materials
are known to simplify the nonlinear partial differential equations governing finite elasticity
(see, e.g. [1-5]) and are thus an attractive choice for constitutive models when exact
analytical solutions are desired.

The corresponding problem for an incompressible material has been previously
considered by Green and Shield[6] (see also[7], Section 3.10). In this case, the incom
pressibility constraint immediately yields an explicit expression for the (spherically
symmetric) deformation field; the hydrostatic pressure field occurring in the constitutive
law is then obtained from equilibrium by integration[6, 7]. Such simplification does not
occur for compressible materials.

In the next section, we recall briefly some preliminary results from the nonlinear
equilibrium theory for a special class of compressible materials, the harmonic materials of
John[l]. In Section 3, the problem of a hollow sphere, composed of a harmonic material,
and subjected to uniform internal and external pressure, is analyzed. Explicit closed form
solutions for the radial and hoop stresses are obtained (see eqns (3.13) below) which are
similar in structure to the classical results oflinear elasticity theory[8]. Upon linearization,
our results become identical to those of the linear theory.

The main features of the results are described in Section 4. Firstly, we observe that the
Cauchy stress (true stress) distribution in the sphere, expressed as a function of the
undeformed coordinates, is (essentially) independent of the constitutive properties of
harmonic materials. Recall that the stresses given by linear elasticity theory [8] are similar
in this respect. It is convenient to divide the subsequent discussion into the two cases of

tThis work was supported by the U.S. National Science Foundation under Grant CME 81~S81 (R.A.) and
Grant MEA 78-26071 (C.O.H.).

715



716 R. AOEYARATNE and C. O. HORGAN

internal pressure only (Po = 0, P, :f. 0) and external pressure only (P, = 0, Po '" 0). In the
former case, we find that there is a critical value Pm of applied pressure (see eqn 4.2) for
which the hoop stress at the inner surface becomes unbounded. This is a surprising result,
since there are no geometric or load discontinuities in the problem. For values of P, < Pm
we demonstrate the existence of a (bounded) solution of the problem; furthermore, the
maximum hoop stress is shown to always occur at the inner surface. Finally, we derive
an expression for the hoop stress for the case of a thin shell (see eqn 4.6).

The situation in the case of external loading only is quite different, in that unbounded
stresses do not arise. We show that there is a critical value of applied external pressure
Po(Po = 2#) at which the spherical cavity closes. Moreover, the maximum hoop stress does
not always occur at the inner surface.t For a sufficiently large value of the pressure, the
location of the maximum hoop stress departs from the inner surface. As the pressure is
further increased, this point continues to move towards the outer boundary. Results for
the corresponding stress concentration/actor are provided. Section 4 concludes with a brief
discussion of the case of combined loading.

It should be noted that stability considerations, such as buckling, are not addressed
in this investigation.+

2. PRELIMINARIES

Consider a body occupying a region 9iio in its unstressed state. A deformation of the
body is described by a sufficiently smooth and invertible transformation y =y(x) which
maps 9iio onto the region fJl occupied by the deformed body. The deformation gradient
tensor F and the Jacobian determinant J are given by

F = Vy(x), J = det F >°on 9io, (2.1)

and according to the polar decomposition theorem F admits the unique representation

F=RU. (2.2)

Here the stretch tensor U is symmetric and positive definite while the rotation tensor R
is proper orthogonal. Moreover the principal stretches AI' A2, A3( > 0) of the deformation
are the eigenvalues of U, while the principal invariants may be taken to be

(2.3)

Next, let a(x) and -r(y) be the first Piola-Kirchhoff and Cauchy stress tensor fields,
respectively,

(2.4)

The conditions for equilibrium in the absence of body force are

div -r(y) =0, T = '[T on 9i,

while the traction t on a surface in the deformed body with unit outward normal n is given
by

t = Tn. (2.6)

Finally let W be the elastic potential of the compressible, homogeneous, isotropic,
hyperelastic solid at hand. Then W depends on position in 9iio exclusively through the
invariants ii' ;2' i) so that the Piola-Kirchhoff stress tensor accompanying the deformation

tThis feature also occurs in the problem of a pressurized incompressible sphere composed ofa Mooney-'Rivlin
material (see[7], p. 108).

tSee, however, Sensenig[IO] for initial stcps towards such an analysis.
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(2.7)

We tum now to the particular class of harmonic materials introduced by Johnll] for
which the elastic-potential has the form

(2.8)t

The constitutive relation (2.7) specializes in this case to

(2.9)

In general. certain additional restrictions on the constitutive function K must be imposed
in order to ensure a physically reasonable response of the material to pure homogeneous
deformations.

For our purposes here it is essential that the material behave reasonably in a state of
isotropic deformation as well as in a plane stress state ofequi-biaxial stretch.t In the former
case one has AI = ~ = A) =). and readily finds from (2.9). (2.4) that 'til = 'tn = 't)) = 't where

(2.10)

Thus the Cauchy stress component t is monotone increasing with A if and only if

d~ (J'f~~il») > 0 for all i. > O.
'. '.

(2.11)

On the other hand, in a state of plane stress equi-biaxial stretch one has Al =A2 =A,
t)3 = (1)3 =O. In this case eqns (2.9). (2.4) show that til ='tn ='t with

(2.12)

In order that the material admit such a state of deformation it is therefore necessary and
sufficient that (2.12h yield a (positive) value for the transverse stretch A,3 corresponding to
a prescribed value of the in-plane stretch ..t We will assume that there exists such a root
).3 =.f)(A) > 0 of (2.12)2 which is in fact unique. differentiable and monotone decreasing
for 0 < A< 00. Observe from the first of (2.12) that the Cauchy stress component 't is then
a monotone increasing function of the stretch A. One can show that such a root .f3(A) exists
if and only if there is a number ioe(l, 3) such that

We omit the derivation of this result since it is entirely analogous to the corresponding
analysis in the plane strain case «(Sl, Section 2). The remainder of this paper will be
concerned with an arbitrary harmonic material subject to the requirements (2.8), (2.11).
(2.13).

tThe most general hannonic material introduced by John includes a tenn in W which is linear in the invariant
;2' As pointed out by John «I), Section 6) however. eIlefl)' densities without this tenn are of particular interest.

fThe latter state of defonnation occurs locally on traction-free boundaries in the problem of concern here.
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3. PRESSURIZED HOLLOW SPHERE: DEFORMATION AND STRESS FIELDS

Suppose now that the region 9fo occupied by the undeformed body is a hollow sphere
of internal radius a and external radius b and that the sphere is subjected to inner and outer
pressures PI' poe ~ 0). The resulting (spherically symmetric) deformation is given by

R =f(r)r, (f(r) > 0), e =0, tfJ =¢ on 910 , (3.1 )

where we have used spherical polar coordinates (r, 8, ¢) and (R, e, tfJ) to describe the
location of a particle in the undeformed and deformed configurations respectively.

The spherical components of the deformation gradient tensor are found (see, e.g. [9]),
using (2.1), (3.1), to be

Frr =f(r) + rf'(r), FOB = F•• =f(r), (3.2)

with the remaining components of F being zero. In view of (2.3), (3.2), the principal
invariants ii' i) are then given by

iJ = 3f(r) + rf'(r), i) =F(r )[f(r) + rf'(r)]. (3.3)

Since the deformation gradient tensor F here happens to be symmetric, the rotation tensor
R in the polar decomposition (2.2) is the identity tensor. The spherical components of
Cauchy stress are thus given by (2.4), (2.9), (2.1) as

(3.4)

on 9to with ;1 being given by (3.3)1' The shear components of stress are zero. The
equilibrium eqns (2.5) in this case reduce to ([9])

which, on using eqns (3.1) and (3.4), yields

~[£"(iJ)] =0 for a < r < b.
dr

(3.5)

(3.6)

Equation (3.6) shows that £"(;1) is constant on (a, b). In view of the assumed
monotonicityt of Je'''(i l )«2.13)3) this in turn implies that the invariant il is constant
throughout the body,

i. = rf'(r) + 3f(r) = C1 for a < r < b.

Upon integration, (3.7) gives

where C2 is an arbitrary constant.
Turning next to the boundary conditions of the problem, we have

(3.7)

(3.8)

(3.9)

tActually, one needs to tentatively assume here that Jt"(i.) is monotone on the entire interval 0 <;1 < 00.
It will subsequently become apparent that ;1 is greater than io so that (2.13») in fact suffices.
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which, in view of (3.1), (3.4), (3.7), are equivalent to

719

(3.10)

We will restrict attention to the case in which the applied pressures are both less than 2/J.
It will be seen, subsequently, that pressures outside of this range are not of physical
interest. Equations (3.10), (2.11), (2.13) now show that

(3.11 )

Substituting (3.8) into (3.10) results in two algebraic equations involving the constants CI,

e2 which may be simplified to read

9Jt"'(c,) (b 3
- a3)2(2J.L - Po)(2J.L - Pi)

C,2 = 2J.L(b3J2J.L -PI-a3J2J.L -Po)2'

3~=( J2J.L -Pi-J2/J -Po )a3b3.
CI a3J2J.L -po-b3J2J.L -PI

(3.12)

A detailed analysis of the foregoing equations is postponed until the following section
where we will show that, for any harmonic material satisfying (2.8), (2.11), (2.13), eqns
(3.12) can be solved for unique values of the constants CI' C2 provided that the applied
pressures lie in a certain range.

Expressions for the associated true stress components are found from (3.4), (3.8), (3.12)
to be

(3.13)

where

(3.14)

In the particular case when the applied pressures are small, (Ptl2J.L, Po/2J.L <C 1), it is not
difficult to show that upon linearization (3.12)-(3.14) yield the classical results (see, e.g.
Section 94 of [8]) according to the infinitesimal theory of elasticity

(3.15)

4. RESULTS AND DISCUSSION

We now examine some features of the results derived in the previous section. Observe
first that according to (3.12) the constants A, Bin (3.14) do not depend on the constitutive
function Jt'. It therefore follows from (3.13) that (within the class of harmonic materials)
the true stress distribution in the sphere, expressed as a function of the undeformed
coordinates, depends on the material at most through its infinitesimal shear modulus J.L. We
emphasize that all of the particular properties that we now proceed to study also bear this
same material independence.
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4.1 Internal pressure casc (Po == 0, 0 < P, < 2 f.l)
The hoop stress Til at the inner surface, according to (3.13), is given by

Aa 6 +Ba 3 +2
Th == 2j,l (Ba 3 + 1)(Ba3 _ 2) at r == a. (4.1 )

It follows that if Ba' == 2 at some value of the applied pressure (say p",), the hoop stress
at t!le inncr surface becomes unbounded.t On using (3.12) and (3.14), this condition can be
solved for the critical pressure Poo( < 2j,l), giving

(4.2)

In the remainder of Section 4.1 we will restrict attention to values of pressure in the interval
o<P, <Poo' One can verify from (3.12), (3.14) that in this case A and B are both bounded
and also that A < 0, B > 0, Br 3

- 2> 0 and Ar 6 + Br 3 + 2 > 0 for a < r < b. Thus, the
hoop and radial stress components (3.13) remain bounded and the hoop stress is tensile.

Next, differentiating the second of (3.13) and using (3.14) leads to

(4.3)

(4.4)

Since Br 3 + I >0 for a <r <b, it follows from (4.3) and (3.11) that the hoop stress t n
decreases monotonically with the radius r and achieves its maximum value at the inner
boundary r = a.

We now turn to the question of existence of the solution formally derived in Section
3. This would be ensured by the existence of a positive solution c) of (3.12»). It is not
difficult to verify that the inequalities

1o< (b 3
- a3 )(1 - p;l2f.l)2 < ~

b3 (1 - p;l2f.l)1 - a3 2

hold provided that 0 < Pi < Poo' Hence, it follows that the right-hand side of (3.12)1 (with
Po = 0) is a number in the interval (0, 9/4). Thus, in view of (2.11), (2.13) we conclude that
(3.12), call indeed be solved for a unique value of cl ( > io> 0).

It is interesting to specialize the present results to the case of a shell which is thin in
its deformed configuration. An appropriate expression for the hoop stress is most easily
derived by first integrating the equilibrium equation (3.5) through the thickness which, on
using (3.9), leads to

f
bf{b)

2Rt98 dR = Pia2j2(a).
alla)

(4.5)

In view of the presumed small thickness, one can approximate the integral in (4.5) by using
the mean-value theorem. This, together with (3.10) yields the approximate result

P, (/
I(-J/-J c= "2 hVI - p;l2f.l - a' (4.6)

for the (true) hoop stress in a thin shell. At small values of the applied pressure (4.6) reduces
to the classical result pp/2(b - a).

Finally we observe that the unboundedness of the hoop stress is associated with the
well-known poor behavior of harmonic materials under compression. Note from (3.8),
(3.12), (4.2) that the radial stretch at the inner wall A.r =F" =af'(a) + f(a) tends to zero
as Pi-+Poo' This in turn leads to the vanishing of the Jacobian J and so, by (3.4) the hoop

tThe numerator of (4.1) does not vanish when Ba J = 2. See (3.14), (3.12), (3.11).
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stress becomes unbounded. The occurrence of such a singular stress behavior is never
theless worth noting, since it is induced by a constitutive effect rather than by a load or
geometric discontinuity.

4.2 External pressure case (Pi = 0, 0 < po < 21'0)
Again. the existencc of a solution is guaranteed provided that the right-hand side of

(3.12), (with Pi = 0) is a number in the interval (0,9/4). This can be readily shown to be
true since Po < 2jl and b > a. Furthermore, it is readily seen that B < 0 and Br3+ ] < 0
for a < r < b whence the stress components fRR and fh remain bounded. It is straight
forward to verify that A < 0 and that Ar6 + Br3+ 2 < 0 for a < r < b. Thus (3.13) shows
that the hoop stress f h is always compressive.

It follows from (3.12), (2.13), (2.] I) that cl~io and C2~ - a3io/3 as the applied pressure
Po approaches the value 2Jl. Consequently (3.8) shows that the deformed inner radius
of(o)~O in this limit thus implying that the cavity closes aspo~2Jl. (Note from (3.8), (3.12)
that the hoop stretch f(r), and hence the Jacobian J, vanishes at the inner boundary as
Po~2jl.)

We now show that in contrast to the corresponding linear problem the (numerically)
largest hoop stress in the sphere does not always occur at the cavity. Differentiating (3.131
with respect to r and using (3.14) again yields (4.3) where B is now given by (3.141, (3.12)2
with Pi =O. The monotonicity of fh is thus seen to depend on the sign of Br 3 +4. In
particular if Br3+ 4 < 0 for 0 < r < b, then Ifhl decreases with r and its largest value occurs
at the inner wall. Similarly, if Br3+ 4 > 0 on the entire interval a < r < b, the largest value
of Ifhl occurs at the outer wall. On the other hand, if Br3+4> 0 for 0 < r < rWI'

Brm
3 + 4 = 0 and Br3 + 4 < 0 for rm < r < b (for some r",£(a, b», the greatest value of Ifhl

occurs at the radius rm' On using the explicit expression for B these conditions may be
examined in detail. We omit the algebraic details of this straightforward but lengthy
calculation and simply record its results: (t = (0 /b )3).

(i) When

Po (I - t )(7 - t)
-<----.---
2Jl - (4 - t)2 '

If lmax a/ways occurs at r =a. For larger values of Po/2jl, two cases must be considered:
(ii) Case (0): t >~. When

(I - t)(7 - t) Po (I - t)(7t - I)
(4 - t)2 < 2Jl < 9t 2 '

l1'hlmall occurs at r = rm = (-4/B)"3 and when

(I - t)(7t - I) Po I
9t2 < 2Jl < ,

l1'hlmall occurs at r = b. The location ofthis maximum stress monotonically moves outwards
as the pressure is increased.

Case (b): t <~. When

(l - 1)(7 - t) Po 1
(4 - t)2 < 2Jl < ,

l'thlmax occurs at r = rWI == (- 4/B)I13, which is always an interior point (even as Po""2jl )
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The explicit value of the largest hoop stress may now be calculated using (3.12), (3.13)2'
(3.14) and the preceding results. In the special case when the cavity is small, or equivalently,
for a cavity in an infinite medium, (alb-O, that is, t-O), result (i) above shows that ITn~v:

is located at the cavity wall provided Po/211 :s; 7/16; its value is given by

(4.7)

On the other hand when Po/211 exceeds 7/16, result (ii), case (b) shows that the maximum
hoop stress occurs at a radius rm£(a, b), where

(4.8)

(4.9)

and its value is

IT;:", =(I + ~:)/(~)'

Thus (4.7), (4.9) yield values for the stress concentration factor K = l'tnlmax/Po. A graph of
K versus Po/211 is sketched in Fig. I.

On the other hand, the hoop stress at the cavity (as t-+O) is given by the r.h.s. of (4.7)
for all values of the applied pressure 0 < Po < 2/l. The variation of this stress with pressure
Po is also shown in Fig. I.

4.3 Combined pressure case (0 < Pi < 2#, 0 < po < 2#)
The analysis of this case is very similar to that of the preceding cases. We will merely

record the principal results.
In the case when Po < Pi the greatest hoop stress occurs at the inner wall. Moreover,

3/2

( Eqn(4·9l

817

Cavity.
Eqn(4·7l ------....... ,-

24125

7/16 15/16 1 P./2f4

Fig. 1. Hoop stress for externally pressurized hollow sphere (0 <c b). Solid curve denotes If.!...,Jpo.
dashed curve denotes If.l, _Jpo. Solid and dashed curves coincide for 0 ~Po/2iJ ~ 7116.
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this value becomes unbounded when

723

(4.10)

which corresponds to the "critical condition" in the present situation. It is necessary,
therefore, to further restrict the values of the applied pressures here to the range

(4.11 )

In the event that (4.11) holds, the existence of a solution is guaranteed as before.
When Pi < Po the stress components remain bounded, a solution exists and the cavity

closes in the limit Po-+2Jl. at fixed Pj'
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